Health Economic Models 2.0 – where data interoperability meets timely decision-making

This article is inspired by the idea of the exciting breakthrough possibilities arising from sourcing (fetching) data to health economic models in real-time using modern software infrastructure capabilities. On a large scale, a development of naming conventions for health economic model inputs would be required, so it is also a call for action for researches working in the health economics modelling domain.

Most of the researches working in the field of Health Technology Assessment (HTA) and economic evaluations of healthcare technologies are familiar with the extent of manual work involved to update a cost-effectiveness or a budget impact model. In particular, the treatment effect data needs to be validated and approved by multiple parties before it is published and used as a model input to project future health and cost outcomes beyond the lifespan of a clinical study.

What are the true costs of a manual model update process? 

In a way, we want to question and challenge the delays related to manual updates of model inputs and current way of operationalising the data in health economic models.

  • How much time is spent to update the model on average?
  • What are the hidden and true costs of not making a timely resource reallocation decision due to delays in model updates?
  • Should all data be manually reviewed before publishing or updating the model results?
  • What data can be sourced without a human review now and after a more rigorous standardisation process in the future?

HTA bodies might require scheduled updates to reevaluate drug price and value based on the the new published evidence. Now, imagine that in the era of information technologies, connectivity and Application Programming Interfaces (API) becoming a standard cost-effectiveness, budget impact, return-on-investment and portfolio optimisation models can become self-updatable! I’d say – that  would be wonderful, but hard to imagine, at it seems almost impossible to agree on several things even within a single country setting:

  1. data classification standard and naming convention standard for input parameters
  2. data sources and their level of acceptance and relevance for a decision problem
  3. the ever lasting need for human interpretation of complex healthcare data and heterogenous results of clinical trials.

The question is would all these and especially the last point (heterogeneity and complexity of interpretation) apply to all types of health economic model inputs? To answer this question, let’s try to have a simple classification of key data inputs for health economic models and try to estimate the degree of necessity for an additional human review and interpretation (Figure 1).

Figure 1. Types of health economic model inputs and their applicability for real-time fetching.

At first sight it seems that some of the health economic model data could be inputted in the model without a human interpretation. This could specifically be true true for:

  • Disease incidence and prevalence Can be sourced from nation-wide sources using ICD codes classification
  • DRG costs. Are updated and published on a regular bases. Can be sourced, once the new update is available
  • Drug prices and market shares: Usually health economic models are populated with list prices, so why not to fetch them from national country-specific published price lists or other trusted source together with utilisation data to derive market shares (uptake rates of drugs)  automatically?
  • Normative utility values. Are standard are not changed very frequently. They can definitely be sourced automatically
  • Number of eligible patients. Can be location specific and sourced from a local EMR for a particular indication relating to the drug

Now the hard ones, they could definitely require a more a more in-depth human review and interpretation, however a dedicated system of alerts could flag that the new data became available and a much better resource allocation decisions could be made (i.e. significant change of order in the cost effectiveness league table).

  • Efficacy data: 
    • From RCT – Risk Ratios for primary and secondary endpoints can be sourced from clintrials.gov on the fly
    • From real-world setting – linkage of the economic model to a living patient registry could provide a real-time  dynamic view on the cost-effective price.
    • The need to update meta-analysis – this is a difficult task involving the review of a wider body of evidence and checking for risk of bias, consistency, internal validity and other quality criteria. On the other hand, it could be most feasible to update meta-analyses automatically, as standard nomenclature, reporting and a set of validation rules exist (i.e. GRADE).
  • Utility values and quality of life data. There is no single source for utility data, so it needs to be sourced from studies identified in the literature. Can the literature reviews be automated? Well to some extent. Can a centralised registry of all utility weights and a duration of episode be standardised and become available for global use in health economic models?

Researches must ensure sure that the data originate from the most valid source. In some cases, they might need to re-conduct a meta-analysis and add another source of efficacy/effectiveness data in the “forest plot”. In such a case, the concept of “on-the-fly fetching” becomes even more hard to imagine. Unique studies could be automatically obtained upon status change to” Completed” at clintrials.gov. Does that, together with the development of unified model inputs naming convention, sound like a first step in such a direction?

 

How the new process could look like? 

Of course, the part of changes to the model data must be reviewed and approved by system administrator in a way similar to track changes functionality with “Reject” and “Approve” options for complete audit trails and logging purpose.

Proposed examples for coding for the development of naming conventions:

  • Prevalance_DiseaseICD10Code_AgeGroup
  • Utility_DiseaseICD10Code_AcuteEpisode_AgeGroup
  • HospitalisationCost_DRGCode
  • DrugCost_Year_Country

Input parameters in health economic models are already coded in a similar way but there is no standardisation and the question is – are we as global health economics leaders ready for unification and standardisation? We’d appreciate to see an ISPOR Task Force on such an interesting, challenging, but definitely a much needed topic. Health economic models are criticised for their lack of transparency and high level of complexity, so why don’t we make this step to improve these perceptions?

Development of unified classification and naming conventions are at the centre of effective healthcare management and regulations. A good example is the FDA preferred substance names and their identifiers. The FDA now argues that the eCTD content does not follow the development flow, contains unstructured data, and varies in the level of granularity provided. The pdf format has its own limitation in terms of data mining, making lifecycle management challenging. This is understandably an issue that has been raised and acknowledged by the industry. Suggestions for alternate formats and platforms have also been made.The draft document circulated by FDA provides a set of key data elements and terminologies associated with PQ/CMC subject areas and uses Global Substance Registration System (G-SRS), Data Universal Numbering System (DUNS), Structured Product Labeling (SPL), Unified Code for Units of Measure (UCUM) and other data fields are to be coded based on HL7. Similar data standardisation efforts were also taken by HDR UK.

 

Final thoughts

It is hard to underestimate the benefits of interoperable health economic models. They lead to timely decisions, better access to much needed treatments and health gains arising from effective decisions that are made faster by simplifying and automating the evidence update process. Currently the time lag between data availability and model publication is at least 6-12 months. It takes time to review all model data, approve it with internal and external stakeholders, following the strict compliance process at all levels (CRO, Consulting, Manufacturer and finally the assessing HTA bodies). Can the time lag be shortened approximately by half, by providing half of the data in automatic interoperable format? This is a rhetorical question from our humble health economics IT standpoint.

It is also true that when a model is prepared and published in a peer-review journal, it’s results remain static and valid only for a certain, very limited amount of time and a particular setting (country). Of course publications provide a great way of sharing a scientific knowledge, but true to say don’t easily allow researches to reproduce modelling studies, as the source code is often not published or the model structure is impossible to reproduce.

Most of the benefits arising from interoperability lie within the provision of early access for patients and time savings related to unnecessary actions for requesting new data and manual copy-paste and updates. The data infrastructure can be setup in a way that Excel or web-based health economics models source data on the fly from a centralised database location where all the data is classified and made ready for exchange with models. By linking with registries and validated sources of real-world data, decision-makers can obtain insights of a fair (cost-effective) drug price much earlier and make much better and timely resource allocation decisions.

Author: Oleksandr Topachevskyi

We are announcing eModels Platform – the new end-to-end solution for health economics models digitisation and communication

It has taken us some quite years to develop and release our new eModels Platform for health economics models creation, adaptation and value communications. This new integrated solution offers a suite of functionality for complete editorial control and global-to-local adaptation and usage analytics of health economics models and value tools.

Key features of the eModels Platform: 

  • Rich content editor inclusive of custom widgets and charts (one-way sensitivity, difference bar charts, community visualisations)
  • Role based users management
  • Designed for storytelling
  • Support of lightweight and heavy Excel models
  • Localisation module including functionality to easily translate the app content and modify data and references
  • Comprehensive usage and clickthrough analytics
  • Flexible hosting (internal or third party cloud)
  • Compliant solution (21CFR) capable of producing a complete audit trail of all user and system administrator actions
  • Runs on all devices including Tablet (iPad, Android) and PC (Windows and Mac)
  • Full offline capabilities allowing to execute the model app  in offline setting
  • Seamlessly push content updates and release of new evidence without corrupting existing version launched in the field
  • Version history and medical and legal review and approval workflows

eModels Platform Benefits: 

  • Fast time-to-market of the health economics models apps
  • Efficient communication of the economic and clinical value story
  • Scalable solution for long-run content updates at global scale

If you are interested, please sign-up for an early access program! See examples of interactive health economics models here.

Best wishes,

Digital Health Outcomes Team

 

Meet Digital Health Outcomes and Global Market Access Solutions at ISPOR in Copenhagen

We are delighted to continue our ongoing participation at ISPOR as exhibitors and short-course instructors. Join our booth (C4-091) to learn more about our innovative technology solutions for value evidence communication and  data collection. we’d be happy to share our knowledge in the space of optimisation and fiscal modelling as presented  in  our ISPOR short-course “Alternative Economic Assessment for Expressing Healthcare Value and Informing Resource Allocation Decisions” that we are teaching on Sunday afternoon.

Digital Health Outcomes & Global Market Access Team

 

Digital Health Outcomes exhibiting at ISPOR in New Orleans

This year at ISPOR our team of health economists and software specialists will be presenting new solutions developed to accelerate market access and research. We are proud to present our eModels builder platform designed to scale the development of interactive health economics models customer facing tools. Apart from this we will be presenting the range of software solutions for ePRO and patient level data collection. Another new and exiting field of our work is data mining algorithms for creation of proprietary databases constituting from a mixture of private and public data.

Join our booth to learn more and discover how custom software solution can help you accelerate product launch.

With best wishes,

Digital Health Outcomes Team

Digital Health Outcomes and GMAS at ISPOR in Barcelona

Join our booth number 215 to learn more about the digital tools and alternative approaches to express healthcare value.  We are exhibiting with our partner company Global Market Access Solutions (GMAS) and jointly running a short course “Alternative Economic Assessment For Expressing Healthcare Value And Informing Resource Allocation Decisions”.

We invite all friends, clients and partners to join drinks reception held at our booth during Tuesday evening poster session.

Sincerely,

DHO & GMAS team

 

MCDA weights survey

In recent years multi-criteria decision analysis (MCDA) has gained interest in healthcare, particularly as a potential methodology for assessing the value drugs. Several frameworks and methodologies have been proposed for developing MCDA tools. However, there is no consensus on the weighting that each criterion should be allocated. This primary data collection tool sought to obtain feedback on the weighting of criteria from clinicians, health economists, insurers, payers, patients and the public. The objective of this survey, which is ongoing, is to establish the weighting preferences of criteria for assessing the value of drugs from people from all walks of life.

By clicking here you can view the MCDA weights data collected from 75+ respondents during ISPOR meeting in Glasgow. Once you submit your data, it will be compared to the pooled results of other respondents. Thank you for your participation! We acknowledge your contribution to the global MCDA weights knowledge base. Survey results will be shared with all respondents.

Digital Health Outcomes at ISPOR in Glasgow

Join our booth number 111 to learn more about the innovative digital tools for health economics and market access. This year we are exhibiting at ISPOR together with our partner company Global Market Access Solutions (GMAS) and offering a unique mix of content development and digital services. Meet our team if you are interested to learn more about interactive health economics models, digitised value narrative, global market access platforms, apps for data gathering and ePRO and other custom solutions for health data collection, processing and visualisation.

Separately we are proud to announce our new MCDA tool designed to collect weights of MCDA criteria worldwide! Please join us to contribute to the survey, all results will be shared with participants.

Join us for drinks and warm atmosphere on Tuesday, 7th of Nov at 18:00, at our booth number 111.

 

Digital Health Outcomes exhibiting at ISPOR in Boston, MA

Please pass by our Digital Health Outcomes booth #415 to speak about approaches to accelerating digital transformation in your organisation. Our team of experts will be presenting market access support platforms, interactive health economics models, value tools and other technology and design solutions for health economics, clinical and regulatory needs.

Apart from our core modelling, data and value story visualisation services and tools for Market Access and HEOR we will be presenting a set of new solutions for Electronic Data Capture and ePRO powered by mHealth apps.